SAMBA: Sparse Approximation of Moment-Based Arbitrary Polynomial Chaos

نویسندگان

  • R. Ahlfeld
  • B. Belkouchi
  • Francesco Montomoli
چکیده

A new arbitrary Polynomial Chaos (aPC) method is presented for moderately high-dimensional problems characterised by limited input data availability. The proposed methodology improves the algorithm of aPC and extends the method, that was previously only introduced as tensor product expansion, to moderately high-dimensional stochastic problems. The fundamental idea of aPC is to use the statistical moments of the input random variables to develop the polynomial chaos expansion. This approach provides the possibility to propagate continuous or discrete probability density functions and also histograms (data sets) as long as their moments exist, are finite and the determinant of the moment matrix is strictly positive. For cases with limited data availability, this approach avoids bias and fitting errors caused by wrong assumptions. In this work, an alternative way to calculate the aPC is suggested, which provides the optimal polynomials, Gaussian quadrature collocation points and weights from the moments using only a handful of Corresponding author: e-mail address: [email protected] Preprint submitted to Journal of Computational Physics May 10, 2016 matrix operations on the Hankel matrix of moments. It can therefore be implemented without requiring prior knowledge about statistical data analysis or a detailed understanding of the mathematics of polynomial chaos expansions. The extension to more input variables suggested in this work, is an anisotropic and adaptive version of Smolyak’s algorithm that is solely based on the moments of the input probability distributions. It is referred to as SAMBA (PC), which is short for Sparse Approximation of MomentBased Arbitrary Polynomial Chaos. It is illustrated that for moderately high-dimensional problems (up to 20 different input variables or histograms) SAMBA can significantly simplify the calculation of sparse Gaussian quadrature rules. SAMBA’s efficiency for multivariate functions with regard to data availability is further demonstrated by analysing higher order convergence and accuracy for a set of nonlinear test functions with 2, 5 and 10 different input distributions or histograms.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generalized Stochastic Collocation Method for Variation-Aware Capacitance Extraction of Interconnects Considering Arbitrary Random Probability

For variation-aware capacitance extraction, stochastic collocation method (SCM) based on Homogeneous Chaos expansion has the exponential convergence rate for Gaussian geometric variations, and is considered as the optimal solution using a quadratic model to model the parasitic capacitances. However, when geometric variations are measured from the real test chip, they are not necessarily Gaussia...

متن کامل

Post-Maneuver Collision Probability Estimation Using Sparse Polynomial Chaos Expansions

This paper describes the use of polynomial chaos expansions to approximate the probability of a collision between two satellites after at least one performs a translation maneuver. Polynomial chaos provides a computationally efficient means to generate an approximate solution to a stochastic differential equation without introducing any assumptions on the a posteriori distribution. The stochast...

متن کامل

A priori testing of sparse adaptive polynomial chaos expansions using an ocean general circulation model database

This work explores the implementation of an adaptive strategy to design sparse ensembles of oceanic simulations suitable for constructing polynomial chaos surrogates. We use a recently developed pseudo-spectral algorithm that is based on a direct application of the Smolyak sparse grid formula and that allows the use of arbitrary admissible sparse grids. The adaptive algorithm is tested using an...

متن کامل

Efficient estimation of polynomial chaos proxies using generalized sparse quadrature

We investigate the use of sparse grid methods in computing polynomial chaos (PC) proxies for forward stochastic problems associated with numerically-expensive simulators. These are problems where some input parameters are random with known distributions, and stochastic properties of the simulator output are desired. The bottleneck for PC proxy construction is the estimation of the coefficients,...

متن کامل

Adaptive Polynomial Dimensional Decompositions for Uncertainty Quantification in High Dimensions

The main theme of this paper is intelligently derived truncation strategies for polynomial dimensional decomposition (PDD) of a high-dimensional stochastic response function commonly encountered in engineering and applied sciences. The truncations exploit global sensitivity analysis for defining the relevant pruning criteria, resulting in two new adaptive-sparse versions of PDD: (1) a fully ada...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. Comput. Physics

دوره 320  شماره 

صفحات  -

تاریخ انتشار 2016